51 research outputs found

    Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    Get PDF
    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization

    Monolithic mm-wave phase shifter using optically activated superconducting switches

    Get PDF
    A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path

    Microwave integrated circuits for space applications

    Get PDF
    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems

    Universal test fixture for monolithic mm-wave integrated circuits calibrated with an augmented TRD algorithm

    Get PDF
    The design and evaluation of a novel fixturing technique for characterizing millimeter wave solid state devices is presented. The technique utilizes a cosine-tapered ridge guide fixture and a one-tier de-embedding procedure to produce accurate and repeatable device level data. Advanced features of this technique include nondestructive testing, full waveguide bandwidth operation, universality of application, and rapid, yet repeatable, chip-level characterization. In addition, only one set of calibration standards is required regardless of the device geometry

    Cellular reflectarray antenna and method of making same

    Get PDF
    A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n.

    Cellular Reflectarray Antenna

    Get PDF
    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell

    Prospects and progress of high Tc superconductivity for space applications

    Get PDF
    Current research in the area of high temperature superconductivity is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAlO3 produced far superior RF characteristics when compared to metallic films on the same substrate. The achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high-Q filters. Melt texturing and melt-quenched techniques are being used to produce bulk material with optimized magnetic properties. These yttrium-enriched materials possess enhanced flux pinning characteristics and could lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies were conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magnetoplasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar, and Mars mission applications

    Multimode Broad-Band Patch Antennas

    Get PDF
    Microstrip patch antennas of a proposed type would be tunable over broad wavelength ranges. These antennas would be attractive for use in a variety of microwave communication systems in which there are requirements for transmission and/or reception at multiple, widely separated frequencies. Prior efforts to construct tunable microstrip patch antennas have involved integration of microstrip circuitry with, variously, ferrite films with magneticfield tuning, solid-state electronic tuning devices, or piezoelectric tuning actuators. Those efforts have been somewhat successful, but have yielded tuning ranges of 20 percent and smaller much smaller than needed in typical practical cases. Like prior microstrip patch antennas (both tunable and non-tunable), the proposed antennas would have instantaneous bandwidths of about 1 percent of their nominal or resonance frequencies. However, these would be tunable over much broader frequency ranges as much as several octaves, depending on specific designs. They could be fabricated relatively simply and inexpensively by use of conventional photolithography, and without need for integration with solid-state electronic or piezoelectric control devices. An antenna as proposed (see figure) would include a microstrip patch radiating element on a thin ferroelectric film on a semiconductor substrate with a ground-plane conductor on the underside of the substrate. The ferroelectric film could be, for example, SrTiO3 with a thickness of the order of 1 or 2 micrometers

    Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed

    Get PDF
    A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications

    Microwave characterization and modeling of GaAs/AlGaAs heterojunction bipolar transistors

    Get PDF
    The characterization and modeling of a microwave GaAs/AlGaAs heterojunction Bipolar Transistor (HBT) are discussed. The de-embedded scattering parameters are used to derive a small signal lumped element equivalent circuit model using EEsof's Touchstone software package. Each element in the equivalent circuit model is shown to have its origin within the device. The model shows good agreement between the measured and modeled scattering parameters over a wide range of bias currents. Further, the MAG (maximum available power gain) and the h sub 21 (current gain) calculated from the measured data and those predicted by the model are also in good agreement. Consequently, the model should also be capable of predicting the f sub max and the f sub T of other HBTs
    corecore